Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Chemosphere ; 357: 142088, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643842

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity. Biochar can be considered a cost-effective and eco-friendly alternative to conventional adsorbents. With abundant feedstocks and favorable physicochemical properties, biochar shows significant potential to be applied as an adsorbent for removing contaminants from water. Despite its effectiveness in adsorbing different inorganic and organic contaminants from water environments, some factors restrict its effective application for PFAS adsorption. These factors are related to the biochar properties, and characteristics of PFAS, as well as water chemistry. Therefore, some modifications have been introduced to overcome these limitations and improve biochar's adsorption capacity. This review explores the preparation conditions, including the pyrolysis process, activation, and modification techniques applied to biochar to enhance its adsorption capacity for different types of PFAS. It addresses critical questions about the adsorption performance of biochar and its composites, mechanisms governing PFAS adsorption, challenges, and future perspectives in this field. The surge in research on biochar for PFAS adsorption indicates a growing interest, making this timely review a valuable resource for future research and an in-depth exploration of biochar's potential in PFAS remediation.


Asunto(s)
Carbón Orgánico , Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Fluorocarburos/química
2.
Sci Total Environ ; 925: 171559, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458438

RESUMEN

The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/química , Biosólidos , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
3.
Mar Pollut Bull ; 188: 114699, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764150

RESUMEN

The present study evaluated the status of sediment toxicity and pollution, and the phytoremediation capability of Typha latifolia L. (TlL) within the largest coastal wetland in the southwest of Iran, the Shadegan International Wetland. In eight sampling sites, covering the entire wetland, the concentration of six toxic elements (As, Cr, Cu, Ni, Pb, and Zn) in the surface sediment, root, and stem of TlL were measured. The results indicated that mean concentrations of Cr, Cu, Pb, and Zn were found to be higher than those in the local background, which likely indicates anthropogenic sources of these elements. Due to the presence of a nearby landfill, the results of modified pollution index (MPI) and aggregate toxicity index (ATI) indicated a moderately-heavily polluted level and moderate to high toxic degree, respectively. However, the medium-low level of toxicity toward living of organisms (21 % probability) was detected based on the assessment of the Sediment Quality Guidelines (SGQ). The results of our study indicate that the root and stem tissues of TlL are capable of acting as an indicator of Cu/Pb/Zn and Zn pollution in sediment, respectively. Considering the potential of phytoremediation, TlL represented both phytostabilization and phytoextraction capabilities for Pb and Zn and a significant increase was observed in the phytoremediation capability by increasing the distance from the landfill area. According to the results of the metal accumulation index (MAI) and comprehensive bioconcentration index (CBCI), TlL grown in the study area showed an acceptable performance in the accumulation of multiple toxic elements compared to that in Turkey, India, and Poland. Overall, TlL is a good candidate for the phytoremediation of sediments contaminated by Pb and Zn.


Asunto(s)
Metales Pesados , Typhaceae , Contaminantes Químicos del Agua , Metales Pesados/análisis , Humedales , Biodegradación Ambiental , Océano Índico , Plomo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos
4.
RSC Adv ; 12(23): 14945-14956, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35702226

RESUMEN

In the present study the aim was to investigate and compare various activation processes for amoxicillin degradation. UV radiation, ultrasound, heat, and hydrogen peroxide were selected as the persulfate activation methods. The effects of various parameters such as pH, persulfate concentration, reaction time, AMX concentration, radical scavengers, and anions were thoroughly investigated. The results showed that AMX degradation was following the pseudo-first order kinetic model. The reaction rate of 0.114 min-1 was calculated for the UV/PS process, which was higher than that of the other investigated processes. The AMX degradation mechanism and pathway investigations revealed that sulfate and hydroxyl radicals were responsible for the degradation of AMX by two degradation pathways of hydroxylation and the opening of the ß-lactam ring. Competition kinetic analysis showed that the second-order rate constant of AMX with sulfate radicals was 8.56 × 109 L mol-1 s-1 in the UV/PS process. Cost analysis was conducted for the four investigated processes and it was found that 1.9 $m-3 per order is required in the UV/PS process for the complete destruction of AMX. Finally, cytotoxic assessment of the treated effluent on human embryonic kidney cells showed a considerable reduction in AMX-induced cell cytotoxicity, proving that the investigated process is sufficiently capable of completely destroying AMX molecules to nontoxic compounds. Therefore, it can be concluded that UV radiation is much more effective than other methods for persulfate activation and can be considered as a reliable technique for antibiotic removal.

5.
Sci Total Environ ; 806(Pt 4): 151391, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740662

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA transmission route was thoroughly investigated in the hospital wastewater, sewage collection network, and wastewater treatment plants. Samples were taken on four occasions from December 2020 to April 2021. The performance of two different wastewater treatment processes of sequencing batch reactor (SBR) and conventional activated sludge (CAS) was studied for virus destruction. For this purpose, liquid phase, solid phase and bioaerosol samples were taken from different units of the investigated wastewater treatment plants (WWTPs). The results revealed that all untreated hospital wastewater samples were positive for SARS-CoV-2 RNA. The virus detection frequency increased when the number of hospitalized cases increased. Detection of viral RNA in the wastewater collection system exhibited higher load of virus in the generated wastewater in areas with poor socioeconomic conditions. Virus detection in the emitted bioaerosols in WWTPs showed that bioaerosols released from CAS with surface aeration contains SARS-CoV-2 RNA posing a potential threat to the working staff of the WWTPs. However, no viral RNA was detected in the bioaerosols of the SBR with diffused aeration system. Investigation of SARS-CoV-2 RNA in WWTPs showed high affinity of the virus to be accumulated in biosolids rather than transporting via liquid phase. Following the fate of virus in sludge revealed that it is completely destructed in anaerobic sludge treatment process. Therefore, based on the results of the present study, it can be concluded that receiving water resources could not be contaminated with virus, if the wastewater treatment processes work properly.


Asunto(s)
COVID-19 , Aguas del Alcantarillado , Humanos , ARN Viral , SARS-CoV-2 , Aguas Residuales
6.
Chemosphere ; 288(Pt 1): 132489, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34626652

RESUMEN

We evaluated groundwater quality, pollution, and its effects on human health in the eastern part of the Lake Urmia basin, the largest lake in the Middle East. Although groundwater quality is suitable for drinking and irrigation purposes, an index-based approach quantifying heavy metal pollution revealed that most sampling sites exhibited moderate to high pollution levels in the northern and southern regions. The positive matrix factorization (PMF) and principal component analysis-multi linear regression (PCA-MLR) receptor models suggest that the main contributors to the observed groundwater pollution, expressed as percentages by model, were: lake water infiltration and dissolution of minerals and fertilizers (46% and 63%), infiltration of leachates from solid wastes (29% and 15%), mixing with industrial-municipal wastewaters (18% and 13%), and vehicular emissions (7% and 9%). The PMF model indicated better correlations between observed and predicted concentrations (R2 = 0.96) than the PCA-MLR (R2 = 0.89). Our results from the human health risk assessments (HHRA) highlight non-carcinogenic and carcinogenic risks for Pb and Cr, respectively. Also, the PMF-based assessment of human health risk indicated that wastewaters and solid waste leachates are responsible for the cancer risk from Cr for children.


Asunto(s)
Agua Subterránea , Lagos , Monitoreo del Ambiente , Humanos , Modelos Lineales , Análisis de Componente Principal , Medición de Riesgo
7.
Chemosphere ; 285: 131446, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34246092

RESUMEN

To determine the status and sources of contamination and phytoremediation capability of Typha latifolia L. in the Bahmanshir River of Iran, the concentration of eight potentially toxic elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in sediment and plant tissues from ten sampling sites were measured. Mean concentrations of Cd, Cr, Cu, Pb, and Zn in the sediment exceeded those of local background. PCA-MLR receptor analysis suggested that the sediment contamination was due to municipal wastewater/vehicular pollution and weathering/industrial/agricultural activities, with contributions of 66% and 34%, respectively. Average enrichment factor (EF) and modified hazard quotient (mHQ) for Pb and Cu were categorized as moderate. Modified pollution index (MPI) and modified ecological risk index (MRI) values suggested moderate to heavy pollution and low ecological risk, respectively. The values of sediment quality guidelines (SQGs), ecological contamination index (ECI), contamination severity index (CSI), and toxic risk index (TRI) were all similar, reflecting low to moderate contamination and toxicity. Typha latifolia L. showed good phytostabilization capability for Cd, Cu, and Pb, and phytoextraction capacity for Zn. Using the metal accumulation index (MAI) and the comprehensive bioconcentration index (CBCI), Typha latifolia L. was shown to have acceptable performance in the accumulation of Cd, Cu, Pb, and Zn and thus, can be considered a good candidate for bioaccumulation of these elements in the study area. Overall, this study suggests that phytoremediation using Typha latifolia L. could be a practical method for uptake and remove of potentially toxic elements from aquatic environments.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Biodegradación Ambiental , Monitoreo del Ambiente , Sedimentos Geológicos , Irán , Metales Pesados/análisis , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 789: 148068, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323830

RESUMEN

Combined biological and physicochemical process was selected for treatment of laundry wastewater. The results show that after microbial adaptation, almost 91% of COD was removed at food to microorganism (F/M) ratio of 0.12 gBOD/gMLSS·d. Dehydrogenase activity of the biomass showed an increasing trend and finally reached 3.8 µgTFgbiomass.d corresponding to the highest process performance. 16SrRNA fragment and phylogenetic analysis identified Pseudomonas pharmacofabricae and Bacillus spp. as the dominant bacteria. The effluent of the biological process was then injected into the UV/O3 process for complete removal of residual COD and detergent. Finally, microfiltration and ultrafiltration were used to remove any remaining suspended solids. The operating cost analysis showed that 0.65 €/m3 treated wastewater is required for treatment of the laundry wastewater. Accordingly, the suggested combination of the biological and physicochemical process could be a promising and highly efficient process for treatment and reuse of laundry wastewater.

9.
Environ Monit Assess ; 193(4): 158, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33660076

RESUMEN

The present study aimed to evaluate the sources of pollution and the potential human and ecological risks of hazardous elements (HEs) in 40 hotspot sites of the agricultural soil around the Arvand River, Iran. The mean concentrations of As, Cd, Co, Cr, Ni, Pb, Zn, and Hg were measured to be 7.2, 0.8, 14.0, 67.9, 69.5, 63.0, 296, and 0.66 (mg kg-1), respectively. With the exception of Ni, the mean concentrations of all the elements were found to be higher than those in the background. The spatial distribution of HEs in the study area indicated an increasing trend of contamination from the north to the south. Pb, Zn, and Hg were the most enriched elements, resulting in a high pollution load. Moreover, the agricultural soil of the study area was threatened by a very high ecological risk due to the contribution of Hg, Cd, and Pb. Multivariate statistical analyses determined that the pollution sources are specified by the oil refinery emissions and effluents, irrigation with polluted water, fertilizers, dust storms, and airport emissions. The carcinogenic risk of HEs in both adults and children revealed an acceptable level; however, children faced a great chance of non-carcinogenic risk. The results provide a scientific basis for monitoring HEs and managing health risks via effective methods in the agricultural areas of the Arvand River basin.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Niño , China , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Irán , Metales Pesados/análisis , Medición de Riesgo , Ríos , Suelo , Contaminantes del Suelo/análisis
10.
RSC Adv ; 11(58): 36965-36977, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35494351

RESUMEN

Cyanide-laden wastewaters generated from mining and electroplating industries are extremely toxic and it is of vital importance to treat them prior to discharge to receiving water resources. The present study aims to oxidize cyanide using an ozonation process catalyzed by MgO and persulfate (PS). A MgO nanocatalyst was synthesized using the sol-gel method and characterized. The results show that the synthesized catalyst had a BET surface area of 198.3 m2 g-1 with a nanocrystalline particle size of 7.42 nm. In the present study, the effects of different operational parameters were investigated, and it was found that the MgO/O3/PS process is able to oxidize 100 mg L-1 of cyanide after 30 min under optimum operational conditions. Cyanide degradation mechanisms in the MgO/O3/PS process were completely investigated and the main radical species were identified using scavenging experiments. It was found that sulfate and hydroxyl radicals both contributed to the cyanide degradation in the MgO/O3/PS process. Cyanide degradation by-products were also tracked and it was found that cyanate and ammonium species are primarily generated during the oxidation, but increase of reaction time allowed their conversion to much less toxic compounds such as nitrate and bicarbonate. Cyanide degradation was also conducted in real industrial wastewater containing 173 mg L-1 of cyanide. Although there was a reduction in cyanide removal rate, the MgO/O3/PS process was able to completely oxidize cyanide within 70 min. Finally, it can be concluded that the ozonation process catalyzed by MgO and persulfate is an efficient and reliable advanced oxidation process for removal of cyanide from industrial wastewater.

11.
MethodsX ; 7: 100970, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637340

RESUMEN

Biological wastewater treatment processes are among the environmentally friendly techniques for degradation of organic compounds. They are also preferred to the physical and chemical processes which are due to the ability of biological processes to treat wide range of organic compounds with lower operational costs. However, biological processes are usually affected by variation in the inlet wastewater quality and quantity. In order to investigate the performance of the wastewater treatment plant, various parameters in case of effluent quality such as COD, BOD, TSS, TDS etc. are required to be measured. Microorganisms in bioreactors use various enzymes to degrade the organic contaminants. Higher toxic organic load on the biological process may lead to the deterioration of the process performance which is due to the reduction in microbial activity of the biomass. Dehydrogenase enzyme produced in biological processes could be used as an indicator for the biological wastewater treatment. Present study introduces a simple and modified method for evaluation of biological wastewater treatment process measuring dehydrogenase activity. In the present study, the effective parameters such as incubation time and types of solvent were investigated and the best procedure is developed for measuring the dehydrogenase activity in biological wastewater treatment process.

12.
RSC Adv ; 8(12): 6293-6305, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35540395

RESUMEN

Cyclic activated sludge integrated with a rotating bed bioreactor (CASIR) was used for phenol biodegradation. The effects of phenol loading rate, mixed liquor suspended solids (MLSS) concentration, media filling ratio, hydraulic retention time (HRT) and salinity were investigated for phenol degradation and COD removal. In the second phase of the study, the microbial content of the bioreactor was induced by hydrogen peroxide injection for in situ generation of peroxidase. For investigating the above-mentioned parameters, the bioreactor was operated for 535 days and residual phenol, nitrate and COD were measured daily. The variation of the dehydrogenase activity and peroxidase activity of suspended biomass and attached film were also monitored during the bioreactor operation. Complete degradation of phenol at the loading rate of 667 g m-3 d-1 was achieved in anoxic conditions. Addition of media to the bioreactor to form active attached biofilm led to the increase in tolerance of the bioreactor on organic loading shocks. It was found that increasing the salinity of the wastewater did not affect the performance of the bioreactor. Investigating dehydrogenase activity proved that the attached biofilm was more involved in phenol degradation, compared with the suspended biomass. However, after switching to peroxidase-mediated conditions, the organic loading tolerance of the bioreactor considerably increased and complete degradation of phenol at the loading rate of 2000 g m-3 d-1 was reached. After adaptation of the microorganisms for hydrogen peroxide, the peroxidase activity of 290 U gbiomass -1 was observed in the bioreactor. Accordingly, the H2O2-induced microbial cells in cyclic activated sludge could be considered as a promising technique for enzymatic degradation of phenol and corresponding COD.

13.
Environ Sci Pollut Res Int ; 23(6): 5077-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26841772

RESUMEN

Fluoride intake, fluorosis, and dental caries could affect quality of life and disease burden worldwide. As a part of the National and Sub-national Burden of Disease Study (NASBOD) in Iran, we conducted a systematic review to evaluate province-year-specific mean drinking water fluoride concentrations and prevalence of fluorosis and of decayed, missed, and filled teeth (DMFT) in Iran from 1990 to December 2015. We did electronic searches of all English and Persian publications on PubMed, ScienceDirect, Google Scholar, and Iranian databases. Results revealed that the weighted mean drinking water fluoride concentration in Iran from 1990 to 2015 has been about 0.65 ± 0.38 mg/l. However, based on the WHO guideline value (1.50 mg/l) and the maximum permissible Iranian national fluoride standard (1.40 to 2.40 mg/l depending on the region's climate), there have been some regions in Iran with non-optimum fluoride concentrations in their drinking water (up to 7.0 mg/l). Overall, concentrations have been higher in southern parts of Iran and in some areas of Azerbaijan-e-Gharbi Province in the northwest and lower in the rest of the northwest and central parts of Iran. In addition, some hotspots have been found in Bushehr Province, southwest of Iran. The highest prevalence of dental flourosis has been reported in normal index while the lowest prevalence has been expressed in severe index. The lowest DMFT (about 0.1) was in Arsanjan City in Fars Province, and the highest (about 6.7) was for Najaf Abad City in Isfahan Province. Prevalence of fluorosis has been rather high in studied areas of Iran (e.g. 100 % in Maku City in Azarbaijan-e-Gharbi Province), and there was discrepancy for DMFT, but a lack of studies renders the results inconclusive. Further studies, health education and promotion plans, and evidence-based nutrition programs are recommended.


Asunto(s)
Agua Potable/química , Fluoruros/análisis , Fluorosis Dental/epidemiología , Enfermedades Dentales/epidemiología , Adolescente , Adulto , Anciano , Niño , Femenino , Fluorosis Dental/etiología , Humanos , Irán/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Calidad de Vida , Enfermedades Dentales/etiología , Adulto Joven
14.
Ecotoxicol Environ Saf ; 125: 72-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26669695

RESUMEN

This study was aimed to evaluate the degradation and mineralization of amoxicillin(AMX), using VUV advanced process. The effect of pH, AMX initial concentration, presence of water ingredients, the effect of HRT, and mineralization level by VUV process were taken into consideration. In order to make a direct comparison, the test was also performed by UVC radiation. The results show that the degradation of AMX was following the first-order kinetic. It was found that direct photolysis by UVC was able to degrade 50mg/L of AMX in 50min,while it was 3min for VUV process. It was also found that the removal efficiency by VUV process was directly influenced by pH of the solution, and higher removal rates were achieved at high pH values.The results show that 10mg/L of AMX was completely degraded and mineralized within 50s and 100s, respectively, indicating that the AMX was completely destructed into non-hazardous materials. Operating the photoreactor in contentious-flow mode revealed that 10mg/L AMX was completely degraded and mineralized at HRT values of 120s and 300s. it was concluded that the VUV advanced process was an efficient and viable technique for degradation and mineralization of contaminated water by antibiotics.


Asunto(s)
Amoxicilina/química , Antibacterianos/química , Biodegradación Ambiental/efectos de la radiación , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Amoxicilina/efectos de la radiación , Antibacterianos/efectos de la radiación , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Contaminantes Químicos del Agua/efectos de la radiación
15.
Artículo en Inglés | MEDLINE | ID: mdl-25093080

RESUMEN

Given the importance of groundwater resources in water supply, this work aimed to study quality of drinking groundwater in rural areas in Tabriz county, northwest of Iran. Thirty two groundwater samples from different areas were collected and analyzed in terms of general parameters along with 20 heavy metals (e.g. As, Hg and …). The data of the analyses were applied as an attribute database for preparing thematic maps and showing water quality parameters. Multivariate statistical techniques, including principal component analysis (PCA) and hierarchical cluster analysis (CA) were used to compare and evaluate water quality. The findings showed that hydrochemical faces of the groundwater were of calcium-bicarbonate type. EC values were from 110 to 1750 µs/cm, in which concentration of salts was high in the east and a zone in north of the studied area. Hardness was from 52 to 476 mg/l and CaCO3 with average value of 185.88 ± 106.56 mg/L indicated hard water. Dominant cations and anions were Ca(2+) > Na(+) > Mg(2+) > K(+) and HCO3 (-) > Cl(-) > SO4 (2-) > NO3 (2), respectively. In the western areas, arsenic contamination was observed as high as 69 µg/L. Moreover, mercury was above the standard level in one of the villages. Eskandar and Olakandi villages had the lowest quality of drinking water. In terms of CA, sampling sites were classified into four clusters of similar water quality and PCA demonstrated that 3 components could cover 84.3% of the parameters. For investigating arsenic anomaly, conducting a comprehensive study in the western part of studied area is strongly recommended.

16.
Health Promot Perspect ; 2(1): 103-11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24688924

RESUMEN

BACKGROUND: This paper discusses the corrosion and scaling potential of Tabriz drinking water distribution system in Northwest of Iran. Internal corrosion of piping is a serious problem in drinking water industry. Corrosive water can cause intrusion of heavy metals especially lead in to water, therefore effecting public health. The aim of this study was to determine corrosion and scaling potential in potable water distribution system of Tabriz during the spring and summer in 2011. METHODS: This study was carried out using Langlier Saturation Index, Ryznar Stability Index, Puckorius Scaling Index, and Aggressiveness indices. Eighty samples were taken from all over the city within two seasons, spring, and summer. Related parameters including temperature, pH, total dissolved solids, calcium hardness, and total alkalinity in all samples were measured in laboratory according to standard method manual. For the statistical analysis of the results, SPSS software (version 11.5) was used RESULTS: The mean and standard deviation values of Langlier, Ryznar, Puckorius and Aggressiveness Indices were equal to -0.68 (±0.43), 8.43 (±0.55), 7.86 (±0.36) and 11.23 (±0.43), respectively. By survey of corrosion indices, it was found that Tabriz drinking water is corrosive. CONCLUSION: In order to corrosion control, it is suggested that laboratorial study with regard to the distribution system condition be carried out to adjust effective parameters such as pH.

17.
Health Promot Perspect ; 2(2): 205-10, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24688935

RESUMEN

BACKGROUND: The main objective of this study was characterization of selected heavy metals concentrations (Lead, cadmium, copper, zinc, nickel and chromium) in groundwater used for ir-rigation in Tabriz City's countryside. METHODS: After consulting with the experts of agriculture department and site survey, 38 irriga-tion water samples were taken from different farms (34 wells) without primary coordination with farm owners. All of samples were acidified to achieve pH≈2 and then were concentrated from 10 to 1 volume. The concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the samples (totally 228) were determined with a flame atomic absorption spectrophotometer. RESULTS: In none of 38 farms, irrigation with surface runoff and industrial wastewater was ob-served. The average concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the irrigated water were de¬termined 6.55, 0.79, 16.23, 3.41, 4.49, and 49.33µg/L, respectively. The average and even maxi¬mum concentrations of heavy metals in the irrigation water at the studied area were less than toxicity threshold limits of agricultural water. CONCLUSION: Currently, not using of surface runoff and industrial wastewater as irrigation water by farmers indicates that the controlling efforts by authorities have been effective in the area. Water used for irrigation of the farms and groundwater of the studied area are not polluted with heavy metals and there is no risk from this viewpoint in the region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...